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Abstract: The objective of this paper is twofold: first to present a new application of 

optimization in the field of urban solar analysis and, secondly, to explain a new technique 

able to solve problems of solar radiation involving hundred thousand degrees of freedom. 

The objective of a sustainable city requires both densification and energy consumption 

control. Since the industrial period, some efforts have been made to improve the management 

of the cities, and because the ranges of materials and building techniques were not so wide, 

the first city decision makers emphasized the search on urban shape, more efficient for the 

solar energy distribution. It was the single parameter that seemed decisive both for the 

population comfort (natural light) and for a better thermal efficiency of the buildings (solar 

contribution). Thanks to the development of numerical simulation methods we want to show 

that today, it becomes possible to model a full city and to optimize some aspects of its design.  
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1 INTRODUCTION 

Modelling a whole city is complex, because the problem is intrinsically multi-scale and 

multi-physic. Moreover, different problems can be examined, as daylight availability, heating 

and cooling demand, or urban climate. Due to the increasing size of the models and the need 

to develop tools and to perform analyses in an integrated environment, the finite element 

method is an ideal frame, because it benefits of many years of experience and development.  

The first part of this paper is dedicated to explain how to integrate the radiosity method in 

the finite element context.  

In the second part, we show the basic behavior of solar radiation in the particular urban 

context. We conclude that very few reflections are necessary to obtain a sufficient precision. 

The concept of envelopes allows decreasing the geometric complexity of the model and 

introduces to new ideas for improving the performances of the solver.   

This need of lowering the geometrical complexity is then related to the classical technique 

of super element used since the beginning of the finite element method development [1]. 

Recording that the super element technique can be viewed as a matrix condensation technique, 

we will examine the characteristics of the view factors matrix, which gives the base of all the 

subsequent operations, like the construction of the radiosity matrix and the solution of the 

thermal radiative equations. This technique matches geometry and matrix properties of the 

radiosity problem in order to decrease the size and to improve the storage capacities.  

Finally, it can help to implement optimization techniques of solar radiation at the city level, 

based not only on genetic algorithms, but also on gradient methods. 

2 RADIOSITY EQUATION 

The form factor (also called view factor) is the basic ingredient of radiative heat transfer 

studies [2, 3]. It defines the fraction of the total power leaving patch Ai that is received by 

patch Aj. Its definition is purely geometric. The angles θi and θj relate to the direction of the 

vector connecting the differential elements with the vectors normal to these elements; r is the 

distance between the differential elements.  
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Except in particular situations, it is not possible to compute the view factors explicitly [4]. 

An additional difficulty appears in presence of obstructions represented in the above 

expression by the visibility function v (yi, yj). This function is equal to 0 or 1 according to the 

possible presence of an obstacle that does not allow seeing an element yi from an element yj.  

It is much easier to compute the differential form factor by removing the external 

integration that will be taken into account only in a second step to achieve the evaluation of 

the form factor, using, for instance, Gaussian quadrature rule. The differential form factor in a 

point surrounded by the element of area dS is given by: 
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In order to solve efficiently the interaction problem, it is usual to set up a discrete 

formulation derived from the global illumination equation by making the following 

assumption. The environment is a collection of a finite number N of small diffusively 

reflecting patches each one, with uniform radiosity [3].  

Let us define R, the diagonal matrix containing the hemispherical diffuse reflectances.  
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ij i ijR ρ δ=  (3) 

Let denote F the matrix of form factors coefficients between patches i and j as computed in 

(1): 

 

11 12 1

21 22

1

N

N NN

F F F

F F
F

F F

 
 
 =
 
 
 

⋯

⋮

⋮ ⋮

⋯ ⋯

 (4) 

When the patches are planar polygons, the terms Fii are equal to zero. These coefficients 

also verify the closure property when the whole environment, scene and sky, is taken into 

account: 
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In the next formula, the variables Bi are the radiosities, or radiant fluxes per unit area, on 

patches i and Ei are the radiant exitances. The radiosity equations can be written: 

 ( )I RF B E MB− = =  (6) 

This discrete formulation leads to a linear system of equations for which many algorithms 

are available. The RF matrix, formed by the products of the form factors by the reflectances, 

is a non symmetric matrix (except if all the reflectances and patch areas are equal), but the 

radiosity matrix M is diagonally dominant and well conditioned. 

3 SYMMETRIC RADIOSITY EQUATIONS 

In order to integrate the radiosity method in the environment of finite element method [5], 

it is suitable to work with symmetric matrices.  

The equation structure allows introducing an important property of the radiative exchanges: 

the principle or reciprocity 

 ( , )  :  i ij j jii j A F A F∀ =  (7) 

We rewrite (6) explicitly and divide each line i by Ai/ρi 

 
1

n
i i

i i k ik i

ki i

A A
B A B F E

ρ ρ=

− =∑  (8) 

In pure diffuse reflection, this relation expresses the energy transfers between the N 

elements of the scene. If we use the reciprocity relation, we can transform (6) by multiplying 

the form factor matrix F by the diagonal matrix Sij = Ai δij of the patch areas. We obtain then a 
symmetric matrix with N (N+1)/2 elements. 
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Then, multiplying (6) by SR
-1
, we write:  
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 ( )1 1  SR SF B SR E− −− =  (10) 

And in symmetrical form: 

 ( ) ( ) 1
1 1 1 1       S R F B SR E B R F R E

−− − − −− = → = −  (11) 

The second member of the first relation represents the incident power on the patch [6]. To 

solve this system of linear equations, a lot of very efficient methods are available. The 

Cholesky [7] one is very well known in the field of finite element method. We have good 

feedback of it for problems with more than one million of degrees of freedom. For hundreds 

of degrees of freedom, it works very well on PCs. 

In each line i of matrices F or SF, the nonzero terms indicate what elements are visible 

from element i. So, we can build an incidence matrix L composed of integers, which gives the 

connections between all the elements of the scene. It will help us to manage the system of 

equations and to identify possible super elements. 

Despite the fact that the heaviest part of the computation time is the evaluation of matrix F, 

we can also try to accelerate the step of solution by using iterative methods as explained in the 

next section. 

4 NEUMANN SERIES 

If G = RF (6) has a norm less than one, the matrix M is invertible and the Neumann series 

of successive multiplications of G will converge to the inverse. 
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This property gives indications to develop very efficient methods to solve these equations. 

It also gives justifications for iterative solutions. As noted by several authors [1, 8, 9, 10], 

each step of the iterative process can be interpreted as the introduction of an additional 

reflection on all the elements of the scene. 

 
Figure 1: One reflection 

 
Figure 2: Two reflections 

The ability to decompose the solution of the radiosity equation in orders of reflection is 

very interesting, because it allows comparing this method with the ray tracing one, where the 

order of reflections is a usual stopping criterion. Thus, the calculation is often stopped at the 
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second reflection. This is true in ray trace software as Radiance [11], but it is also the case for 

a radiosity solver like V-Ray software [12]. In the latter, we can choose one or two reflections.  

In a city, multiple reflections are possible, for instance between facades of narrow streets. 

Considering an average reflectance of 20%, the energy flow is no more than 20% after the 

first reflection, 4% after the second one and less than 1% after the third one. However, if 

someone is interested in local results, the overall reasoning can be confusing, because the 

reflected energy may be the only available on certain surfaces, where it takes a considerable 

importance. 

In an inner space, the radiation from the Sun and the sky through the window illuminates 

largely the floor and part of the walls, but it leaves the ceiling in full shade. The first 

reflection on the ground is the one that illuminates the ceiling. As it is generally light in color, 

the ceiling returns a second non-negligible reflection to the ground. This light is the first to 

reach parts of the ground from where the sky is not visible. Two reflections are therefore 

needed to get a realistic rendering of an interior space in natural light. 

But what happens in an outdoor scene? Two illustrations show an urban courtyard 

illuminated by the Sun and the sky with one reflection (Figure 1) and two reflections (Figure 

2). Of course, we observe differences, but the structure of the image (shadows shape, order of 

increasing brightness, main gradations) is not changed. In an urban scene, because we can 

almost always see a bit of the sky, the second reflection does not represent a substantial 

change in the results, and the following ones can be ignored (except in very specific 

configurations, as for example the entrance of a tunnel). 

Modern cities all share some essential characteristics: a network of streets delineates 

parcels built with heights ranging from a few meters to tens of meters. However, other 

features are highly variable. This is the case of the coatings optical properties. Facades can be 

dark (brick) or light (limed walls), with a rate of glazing (and so, specular reflection) from 

few percent to almost 100% (towers of glass and steel). In the example shown here, an area 

with very clear facades (reflection coefficient equal to 78%) with dark roofs (22%) has been 

considered. 

 
Figure 3: Sun height 50° 

 
Figure 4: Sun height 35° 

 
Figure 5: Sun height 20° 

 

An important parameter of environmental physics is the albedo. This is an average 

reflection coefficient over a very large area. For instance, we can refer to the albedo of a 

planet (the Earth albedo is about 30 %, [13]). The albedo of sea ice, ocean, desert or forest is 

fairly easy to assess. Today, while cities cover large parts of the land area, it is necessary to 

know their albedo. However, the semi-regular structure of cities gives highly variable albedo. 

In our example, viewed from above (Figure 3), the city has the darkest areas of its roofs, but 

when we move down toward the horizon, we see mostly clear surfaces (Figure 5). The 

relationship between apparently light and dark surfaces also depends on building height and 

density of the neighborhood. 
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Another characteristic of urban settings, due to the fact that cities are relatively low and 

very spread out, is that what we can see from a given point is very variable. From a window 

on a ground floor, the view can be limited to only two surfaces: the street and the facing wall. 

From a window at the top of a tower, we can see dozens, even hundreds of buildings, as in 

previous images. Calculating an urban geometry therefore strongly motivates to play on the 

buildings level of detail. 

In Figure 7, the distant buildings have been replaced by their prismatic envelopes. This 

kind of procedure has been used for a long time to accelerate the detection of visible surface. 

Several options are available; since bounding boxes [14] to prismatic envelopes and convex 

bounding polyhedra. 

 
Figure 6: Urban parcel 

 
Figure 7: Using envelopes 

5 SUPER ELEMENT TECHNIQUE 

The motivation for using super element technique is to save computation time and storage 

capabilities [15]. Their definition is related to the solution of a linear system. It can be seen as 

a method of matrix condensation. 
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=     
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The variables are split in two groups: the first one with index r saved for the next steps and 

the second one with index c that is condensed or temporarily eliminated. The reduced system 

is: 

 ( )1

c cc c cr rX M Y M X
−= −  (14) 

Assuming that the variables Xr have been evaluated before, we obtain Xc by solving the 

second line of (13):  

 1 1( )rr rc cc cr r r rc cc cM M M M X Y M M Y− −+ = −  (15) 

The condensed system is: 

 * * *

rr r rM X Y=  (16) 

The generation of a super element is performed by selecting a group of elements assumed 

to be strongly connected. This operation is performed by using the connection or incidence 

matrix L. The process is the following: after selecting randomly a first element, we repeat the 
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operation for all the elements of the same line. All the elements that have a sufficient 

connection, i.e., a sufficient number of elements sharing the same links, are candidates to 

form the super element. At the end, the elements that do not have relation with elements 

outside this group or that have few connections outside are condensed like in (16). When the 

definition of the first super element is fixed, we start with a new one until all the elements 

have been examined or accepted inside a super element. 

This process can be fully automated and is similar to the processes of bandwidth and front 

width optimization in finite element method [16, 17]. 

This process allows an efficient storage of the matrices and gives the possibility to pre-

compute part of the solution. It is also a good method to optimize the solution itself, in the 

sense that it can provide the optimal sequence of variables in the solution process. 

6 MANAGEMENT OF THE OPTIMIZATION 

To perform geometric optimization of a set of building, an urban district, etc., several 

methods are available. In the frame of city optimization, some experience is yet available [18, 

19], using generally genetic algorithms. The discussion about the most relevant optimization 

method is still open [20, 21]. Here, we discuss the alternative of gradient methods that looks 

very suitable for massive applications. 

The goal is to limit the number of iterations (few tens). However, at each step, it is 

necessary to compute the sensitivities with respect to the variations of the design variables. 

That implies several extra analyses on very similar geometric models. To be efficient, the 

model has to be modified very easily. It can be achieved thanks to the incidence matrix, which 

allows better management of the sub matrices and consequently leads to faster solution and 

improved storage of the matrices. 

The incidence matrix is describing the relations between all the elements defining the 

scene. When the view factor of an element related to another one is zero, it means that it is not 

seen from it (or not connected to it). By definition, the sum of the solid angles of all the 

elements (including the sky ones) surrounding the differential element of a flat surface is 

equal to 2π and, with the same condition, the sum of view factors is equal to π. Consequently, 
summarizing the normalized elements of a line of the solid angle factors or of the view factors 

matrix gives always one.  

These properties, combined with the geometrical description of the scene: localizations of 

the elements, vicinity relations etc…, allow identifying sub matrices that will not be modified 

during the optimization process and consequently to pre-compute them and to perform some 

of the matrix operations only one time.  

These matrix evaluations are also giving information on the coupling of different sub-

scenes like districts or streets. If the optimization is, for instance, limited to a district, this 

knowledge leads to efficient strategies for evaluating the objective function and the different 

derivatives necessary to set up gradient methods.  

This kind of improvement was obtained in the thermal analysis of spacecrafts [22] in 

which it is mandatory to control very precisely the temperatures of the components and to 

favor the thermal fluxes. It could be extended to the optimization of urban districts, but it is 

still necessary to specify the design variables, the relevant constraints and, finally, the 

objective functions of such a problem. 
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7 CONCLUSIONS 

The proposed acceleration techniques of the solution allow using, in the optimization step, 

gradient techniques instead of genetic like algorithms that are difficult to use in problems 

involving hundred thousands of degrees of freedom. 

As a conclusion, grouping the elements in super elements with adequate criteria allows a 

better use of the coupling terms in the matrices of the equations systems and the saving of part 

of the computations to accelerate the optimization process. 
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